A Synthetic Route for Crystals of Woven Structures, Uniform Nanocrystals, and Thin Films of Imine Covalent Organic Frameworks.

نویسندگان

  • Yingbo Zhao
  • Lei Guo
  • Felipe Gándara
  • Yanhang Ma
  • Zheng Liu
  • Chenhui Zhu
  • Hao Lyu
  • Christopher A Trickett
  • Eugene A Kapustin
  • Osamu Terasaki
  • Omar M Yaghi
چکیده

Developing synthetic methodology to crystallize extended covalent structures has been an important pursuit of reticular chemistry. Here, we report a homogeneous synthetic route for imine covalent organic frameworks (COFs) where crystallites emerge from clear solutions without forming amorphous polyimine precipitates. The key feature of this route is the utilization of tert-butyloxycarbonyl group protected amine building blocks, which are deprotected in situ and gradually nucleate the crystalline framework. We demonstrate the utility of this approach by crystallizing a woven covalent organic framework (COF-112), in which covalent organic threads are interlaced to form a three-dimensional woven framework. The homogeneous imine COF synthesis also enabled the control of nucleation and crystal growth leading to uniform nanocrystals, through microwave-assisted reactions, and facile preparation of oriented thin films.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covalent Organic Frameworks as a Platform for Multidimensional Polymerization

The simultaneous polymerization and crystallization of monomers featuring directional bonding designs provides covalent organic frameworks (COFs), which are periodic polymer networks with robust covalent bonds arranged in two- or three-dimensional topologies. The range of properties characterized in COFs has rapidly expanded to include those of interest for heterogeneous catalysis, energy stora...

متن کامل

Few-layer, large-area, 2D covalent organic framework semiconductor thin films.

In this work, we synthesize large-area thin films of a conjugated, imine-based, two-dimensional covalent organic framework at the solution/air interface. Thicknesses between ∼2-200 nm are achieved. Films can be transferred to any desired substrate by lifting from underneath, enabling their use as the semiconducting active layer in field-effect transistors.

متن کامل

Preparation of Nanocrystalline CdS Thin Films by a New Chemical Bath Deposition Route for Application in Solar Cells as Antireflection Coatings

Nanocrystalline cadmium sulfide thin films as antireflection materials for solar cells have been prepared by a new chemical solution deposition route in an aqueous medium at 50 °C. as-deposited thin films were studied using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and optical absorption spectra. X-ray diffraction data indicated the formation of hexagonal na...

متن کامل

A Perspective on the Synthesis, Purification, and Characterization of Porous Organic Cages

Porous organic cages present many opportunities in functional materials chemistry, but the synthetic challenges for these molecular solids are somewhat different from those faced in the areas of metal-organic frameworks, covalent-organic frameworks, or porous polymer networks. Here, we highlight the practical methods that we have developed for the design, synthesis, and characterization of imin...

متن کامل

Highly oriented surface-growth and covalent dye labeling of mesoporous metal-organic frameworks.

Mesoporous amino-functionalized metal-organic framework thin films with the UiO-68 topology were grown in a highly oriented fashion on two different self-assembled monolayers on gold. The oriented MOF films were covalently modified with the fluorescent dye Rhodamine B inside the pore system, as demonstrated with size-selective fluorescence quenching studies. Our study suggests that mesoporous m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 139 37  شماره 

صفحات  -

تاریخ انتشار 2017